3.4.64 \(\int \frac {\tan ^3(e+f x)}{(a+b \sec ^2(e+f x))^3} \, dx\) [364]

3.4.64.1 Optimal result
3.4.64.2 Mathematica [A] (verified)
3.4.64.3 Rubi [A] (verified)
3.4.64.4 Maple [A] (verified)
3.4.64.5 Fricas [A] (verification not implemented)
3.4.64.6 Sympy [F(-1)]
3.4.64.7 Maxima [A] (verification not implemented)
3.4.64.8 Giac [B] (verification not implemented)
3.4.64.9 Mupad [B] (verification not implemented)

3.4.64.1 Optimal result

Integrand size = 23, antiderivative size = 81 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=-\frac {b (a+b)}{4 a^3 f \left (b+a \cos ^2(e+f x)\right )^2}+\frac {a+2 b}{2 a^3 f \left (b+a \cos ^2(e+f x)\right )}+\frac {\log \left (b+a \cos ^2(e+f x)\right )}{2 a^3 f} \]

output
-1/4*b*(a+b)/a^3/f/(b+a*cos(f*x+e)^2)^2+1/2*(a+2*b)/a^3/f/(b+a*cos(f*x+e)^ 
2)+1/2*ln(b+a*cos(f*x+e)^2)/a^3/f
 
3.4.64.2 Mathematica [A] (verified)

Time = 1.12 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.62 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=\frac {2 \left (a^2+3 a b+3 b^2\right )+(a+2 b)^2 \log (a+2 b+a \cos (2 (e+f x)))+a^2 \cos ^2(2 (e+f x)) \log (a+2 b+a \cos (2 (e+f x)))+2 a (a+2 b) \cos (2 (e+f x)) (1+\log (a+2 b+a \cos (2 (e+f x))))}{2 a^3 f (a+2 b+a \cos (2 (e+f x)))^2} \]

input
Integrate[Tan[e + f*x]^3/(a + b*Sec[e + f*x]^2)^3,x]
 
output
(2*(a^2 + 3*a*b + 3*b^2) + (a + 2*b)^2*Log[a + 2*b + a*Cos[2*(e + f*x)]] + 
 a^2*Cos[2*(e + f*x)]^2*Log[a + 2*b + a*Cos[2*(e + f*x)]] + 2*a*(a + 2*b)* 
Cos[2*(e + f*x)]*(1 + Log[a + 2*b + a*Cos[2*(e + f*x)]]))/(2*a^3*f*(a + 2* 
b + a*Cos[2*(e + f*x)])^2)
 
3.4.64.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.93, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4626, 354, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^3}{\left (a+b \sec (e+f x)^2\right )^3}dx\)

\(\Big \downarrow \) 4626

\(\displaystyle -\frac {\int \frac {\cos ^3(e+f x) \left (1-\cos ^2(e+f x)\right )}{\left (a \cos ^2(e+f x)+b\right )^3}d\cos (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {\int \frac {\cos ^2(e+f x) \left (1-\cos ^2(e+f x)\right )}{\left (a \cos ^2(e+f x)+b\right )^3}d\cos ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 86

\(\displaystyle -\frac {\int \left (-\frac {b (a+b)}{a^2 \left (a \cos ^2(e+f x)+b\right )^3}-\frac {1}{a^2 \left (a \cos ^2(e+f x)+b\right )}+\frac {a+2 b}{a^2 \left (a \cos ^2(e+f x)+b\right )^2}\right )d\cos ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {b (a+b)}{2 a^3 \left (a \cos ^2(e+f x)+b\right )^2}-\frac {a+2 b}{a^3 \left (a \cos ^2(e+f x)+b\right )}-\frac {\log \left (a \cos ^2(e+f x)+b\right )}{a^3}}{2 f}\)

input
Int[Tan[e + f*x]^3/(a + b*Sec[e + f*x]^2)^3,x]
 
output
-1/2*((b*(a + b))/(2*a^3*(b + a*Cos[e + f*x]^2)^2) - (a + 2*b)/(a^3*(b + a 
*Cos[e + f*x]^2)) - Log[b + a*Cos[e + f*x]^2]/a^3)/f
 

3.4.64.3.1 Defintions of rubi rules used

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4626
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_ 
)]^(m_.), x_Symbol] :> Module[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-(f 
*ff^(m + n*p - 1))^(-1)   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff* 
x)^n)^p/x^(m + n*p)), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, n} 
, x] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p]
 
3.4.64.4 Maple [A] (verified)

Time = 11.32 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.90

method result size
derivativedivides \(\frac {-\frac {\left (a +b \right ) b}{4 a^{3} \left (b +a \cos \left (f x +e \right )^{2}\right )^{2}}-\frac {-a -2 b}{2 a^{3} \left (b +a \cos \left (f x +e \right )^{2}\right )}+\frac {\ln \left (b +a \cos \left (f x +e \right )^{2}\right )}{2 a^{3}}}{f}\) \(73\)
default \(\frac {-\frac {\left (a +b \right ) b}{4 a^{3} \left (b +a \cos \left (f x +e \right )^{2}\right )^{2}}-\frac {-a -2 b}{2 a^{3} \left (b +a \cos \left (f x +e \right )^{2}\right )}+\frac {\ln \left (b +a \cos \left (f x +e \right )^{2}\right )}{2 a^{3}}}{f}\) \(73\)
risch \(-\frac {i x}{a^{3}}-\frac {2 i e}{a^{3} f}+\frac {2 a^{2} {\mathrm e}^{6 i \left (f x +e \right )}+4 a b \,{\mathrm e}^{6 i \left (f x +e \right )}+4 a^{2} {\mathrm e}^{4 i \left (f x +e \right )}+12 a b \,{\mathrm e}^{4 i \left (f x +e \right )}+12 b^{2} {\mathrm e}^{4 i \left (f x +e \right )}+2 a^{2} {\mathrm e}^{2 i \left (f x +e \right )}+4 a b \,{\mathrm e}^{2 i \left (f x +e \right )}}{a^{3} f \left (a \,{\mathrm e}^{4 i \left (f x +e \right )}+2 a \,{\mathrm e}^{2 i \left (f x +e \right )}+4 b \,{\mathrm e}^{2 i \left (f x +e \right )}+a \right )^{2}}+\frac {\ln \left ({\mathrm e}^{4 i \left (f x +e \right )}+\frac {2 \left (a +2 b \right ) {\mathrm e}^{2 i \left (f x +e \right )}}{a}+1\right )}{2 a^{3} f}\) \(199\)

input
int(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^3,x,method=_RETURNVERBOSE)
 
output
1/f*(-1/4*(a+b)*b/a^3/(b+a*cos(f*x+e)^2)^2-1/2*(-a-2*b)/a^3/(b+a*cos(f*x+e 
)^2)+1/2/a^3*ln(b+a*cos(f*x+e)^2))
 
3.4.64.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.37 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=\frac {2 \, {\left (a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + a b + 3 \, b^{2} + 2 \, {\left (a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \log \left (a \cos \left (f x + e\right )^{2} + b\right )}{4 \, {\left (a^{5} f \cos \left (f x + e\right )^{4} + 2 \, a^{4} b f \cos \left (f x + e\right )^{2} + a^{3} b^{2} f\right )}} \]

input
integrate(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^3,x, algorithm="fricas")
 
output
1/4*(2*(a^2 + 2*a*b)*cos(f*x + e)^2 + a*b + 3*b^2 + 2*(a^2*cos(f*x + e)^4 
+ 2*a*b*cos(f*x + e)^2 + b^2)*log(a*cos(f*x + e)^2 + b))/(a^5*f*cos(f*x + 
e)^4 + 2*a^4*b*f*cos(f*x + e)^2 + a^3*b^2*f)
 
3.4.64.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=\text {Timed out} \]

input
integrate(tan(f*x+e)**3/(a+b*sec(f*x+e)**2)**3,x)
 
output
Timed out
 
3.4.64.7 Maxima [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.40 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=-\frac {\frac {2 \, {\left (a^{2} + 2 \, a b\right )} \sin \left (f x + e\right )^{2} - 2 \, a^{2} - 5 \, a b - 3 \, b^{2}}{a^{5} \sin \left (f x + e\right )^{4} + a^{5} + 2 \, a^{4} b + a^{3} b^{2} - 2 \, {\left (a^{5} + a^{4} b\right )} \sin \left (f x + e\right )^{2}} - \frac {2 \, \log \left (a \sin \left (f x + e\right )^{2} - a - b\right )}{a^{3}}}{4 \, f} \]

input
integrate(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^3,x, algorithm="maxima")
 
output
-1/4*((2*(a^2 + 2*a*b)*sin(f*x + e)^2 - 2*a^2 - 5*a*b - 3*b^2)/(a^5*sin(f* 
x + e)^4 + a^5 + 2*a^4*b + a^3*b^2 - 2*(a^5 + a^4*b)*sin(f*x + e)^2) - 2*l 
og(a*sin(f*x + e)^2 - a - b)/a^3)/f
 
3.4.64.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 656 vs. \(2 (75) = 150\).

Time = 0.96 (sec) , antiderivative size = 656, normalized size of antiderivative = 8.10 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=-\frac {\frac {3 \, a^{3} + 9 \, a^{2} b + 9 \, a b^{2} + 3 \, b^{3} + \frac {20 \, a^{3} {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} + \frac {28 \, a^{2} b {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} - \frac {4 \, a b^{2} {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} - \frac {12 \, b^{3} {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} + \frac {34 \, a^{3} {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {22 \, a^{2} b {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {10 \, a b^{2} {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {18 \, b^{3} {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {20 \, a^{3} {\left (\cos \left (f x + e\right ) - 1\right )}^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {28 \, a^{2} b {\left (\cos \left (f x + e\right ) - 1\right )}^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} - \frac {4 \, a b^{2} {\left (\cos \left (f x + e\right ) - 1\right )}^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} - \frac {12 \, b^{3} {\left (\cos \left (f x + e\right ) - 1\right )}^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, a^{3} {\left (\cos \left (f x + e\right ) - 1\right )}^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {9 \, a^{2} b {\left (\cos \left (f x + e\right ) - 1\right )}^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {9 \, a b^{2} {\left (\cos \left (f x + e\right ) - 1\right )}^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {3 \, b^{3} {\left (\cos \left (f x + e\right ) - 1\right )}^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}}{{\left (a^{4} + a^{3} b\right )} {\left (a + b + \frac {2 \, a {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} - \frac {2 \, b {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} + \frac {a {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {b {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}\right )}^{2}} - \frac {2 \, \log \left (a + b + \frac {2 \, a {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} - \frac {2 \, b {\left (\cos \left (f x + e\right ) - 1\right )}}{\cos \left (f x + e\right ) + 1} + \frac {a {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {b {\left (\cos \left (f x + e\right ) - 1\right )}^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}\right )}{a^{3}} + \frac {4 \, \log \left ({\left | -\frac {\cos \left (f x + e\right ) - 1}{\cos \left (f x + e\right ) + 1} + 1 \right |}\right )}{a^{3}}}{4 \, f} \]

input
integrate(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^3,x, algorithm="giac")
 
output
-1/4*((3*a^3 + 9*a^2*b + 9*a*b^2 + 3*b^3 + 20*a^3*(cos(f*x + e) - 1)/(cos( 
f*x + e) + 1) + 28*a^2*b*(cos(f*x + e) - 1)/(cos(f*x + e) + 1) - 4*a*b^2*( 
cos(f*x + e) - 1)/(cos(f*x + e) + 1) - 12*b^3*(cos(f*x + e) - 1)/(cos(f*x 
+ e) + 1) + 34*a^3*(cos(f*x + e) - 1)^2/(cos(f*x + e) + 1)^2 + 22*a^2*b*(c 
os(f*x + e) - 1)^2/(cos(f*x + e) + 1)^2 - 10*a*b^2*(cos(f*x + e) - 1)^2/(c 
os(f*x + e) + 1)^2 + 18*b^3*(cos(f*x + e) - 1)^2/(cos(f*x + e) + 1)^2 + 20 
*a^3*(cos(f*x + e) - 1)^3/(cos(f*x + e) + 1)^3 + 28*a^2*b*(cos(f*x + e) - 
1)^3/(cos(f*x + e) + 1)^3 - 4*a*b^2*(cos(f*x + e) - 1)^3/(cos(f*x + e) + 1 
)^3 - 12*b^3*(cos(f*x + e) - 1)^3/(cos(f*x + e) + 1)^3 + 3*a^3*(cos(f*x + 
e) - 1)^4/(cos(f*x + e) + 1)^4 + 9*a^2*b*(cos(f*x + e) - 1)^4/(cos(f*x + e 
) + 1)^4 + 9*a*b^2*(cos(f*x + e) - 1)^4/(cos(f*x + e) + 1)^4 + 3*b^3*(cos( 
f*x + e) - 1)^4/(cos(f*x + e) + 1)^4)/((a^4 + a^3*b)*(a + b + 2*a*(cos(f*x 
 + e) - 1)/(cos(f*x + e) + 1) - 2*b*(cos(f*x + e) - 1)/(cos(f*x + e) + 1) 
+ a*(cos(f*x + e) - 1)^2/(cos(f*x + e) + 1)^2 + b*(cos(f*x + e) - 1)^2/(co 
s(f*x + e) + 1)^2)^2) - 2*log(a + b + 2*a*(cos(f*x + e) - 1)/(cos(f*x + e) 
 + 1) - 2*b*(cos(f*x + e) - 1)/(cos(f*x + e) + 1) + a*(cos(f*x + e) - 1)^2 
/(cos(f*x + e) + 1)^2 + b*(cos(f*x + e) - 1)^2/(cos(f*x + e) + 1)^2)/a^3 + 
 4*log(abs(-(cos(f*x + e) - 1)/(cos(f*x + e) + 1) + 1))/a^3)/f
 
3.4.64.9 Mupad [B] (verification not implemented)

Time = 19.47 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.89 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^3} \, dx=-\frac {\frac {a^2+3\,a\,b+2\,b^2}{4\,a^2\,b}+\frac {b\,{\mathrm {tan}\left (e+f\,x\right )}^2}{2\,a^2}}{f\,\left (2\,a\,b+a^2+b^2+{\mathrm {tan}\left (e+f\,x\right )}^2\,\left (2\,b^2+2\,a\,b\right )+b^2\,{\mathrm {tan}\left (e+f\,x\right )}^4\right )}-\frac {\mathrm {atanh}\left (\frac {4\,b^2\,{\mathrm {tan}\left (e+f\,x\right )}^2}{8\,b^2+\frac {8\,b^3}{a}+4\,b^2\,{\mathrm {tan}\left (e+f\,x\right )}^2+\frac {8\,b^3\,{\mathrm {tan}\left (e+f\,x\right )}^2}{a}}\right )}{a^3\,f} \]

input
int(tan(e + f*x)^3/(a + b/cos(e + f*x)^2)^3,x)
 
output
- ((3*a*b + a^2 + 2*b^2)/(4*a^2*b) + (b*tan(e + f*x)^2)/(2*a^2))/(f*(2*a*b 
 + a^2 + b^2 + tan(e + f*x)^2*(2*a*b + 2*b^2) + b^2*tan(e + f*x)^4)) - ata 
nh((4*b^2*tan(e + f*x)^2)/(8*b^2 + (8*b^3)/a + 4*b^2*tan(e + f*x)^2 + (8*b 
^3*tan(e + f*x)^2)/a))/(a^3*f)